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Some Paradoxes: Puzzling or Poorly Presented?  
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For many classrooms, using counterintuitive puzzles and apparent paradoxes is a way to engage 

students. However, it can be challenging to find and adapt grade-appropriate examples for 

teaching statistical concepts. Here we present four common “paradoxes” (Will Rogers 

Phenomenon, Simpson Paradox, False Positive Paradox, and the Birthday Problem) that middle 

and high school teachers can use with their students.  

 

The terms paradox, counterintuitive, and fallacy are related but can vary in meaning across 

different people. The terms intuitive and counterintuitive are particularly tricky, with meanings 

dependent on a person’s previous experiences and training. For example, Newtonian physics was 

not intuitive to Newton until he was in his 40s. For the purpose of an alliterative title, we use the 

term paradox in the lay sense of “it doesn’t seem possible.” We also provide specific examples 

as one way to make the paradox or problem seem intuitive. That is, if a person thinks X can 

never happen, one specific example of X is all it takes to eliminate the truth of the “never.” 

 

For each paradox, we first give a conventional description or example that many find 

counterintuitive. For some classrooms, this counterintuitiveness is a great way to engage 

students, but it runs the risk of making some students feel incompetent. As an alternative, we 

provide specific numerical examples that are accessible to most middle school and high school 

students. Additionally, teachers can share with students that professionals in a variety of fields, 

including forensics, health care, law, medicine, science, and sociology, also find these puzzles 

counterintuitive and have been fooled by them, in part, because of the poor wording or the 

fractions involved.  

 

Because the numerical examples we provide are more intuitive to most students, we offer some 

extensions to engage students in thinking about each problem further. For middle school 

students, we suggest some ways to have the students create their own examples. In doing so, the 

students will be able to practice critically thinking about distributions and combinations, 

critically evaluating data, and interpreting data. In addition, these paradoxes can be used to 

motivate practicing arithmetic skills such as reducing fractions, adding fractions, and finding 

means. For high school students, our approach may give students confidence, possibly 

motivating them to go into more depth by considering situations where the paradoxes may arrive 

in socially and politically engaging situations.  

 

As we tried to understand why these paradoxes are counterintuitive to many, we found that in 

our case, the confusion was often caused because the statement or example provided incomplete 

information or allowed the reader to make an assumption that the provider was not making, 

leading the reader to an incorrect conclusion. We should note that the term, “incomplete 

information” is meant to include the fact that reduced fractions, decimals, and percentages can be 

considered incomplete in the sense that, ½ can have a different effect on the analysis than 

50/100, as seen particularly with the Simpson and False Positive Paradoxes. Since ratios, rates, 

percentages, and means are all essentially fractions, students should learn to be careful when 

only the reduced fraction is presented.  
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Will Rogers Phenomenon  

The Will Rogers phenomenon describes situations in which given two groups A and B, moving 

an object from one group to the other increases the mean value of both groups. This phenomenon 

is considered counterintuitive because it describes a situation where moving an element from one 

set to another can increase the mean value of both sets, even when the value of the element itself 

doesn’t change.  

 

As with the other examples, whether a person finds this counterintuitive depends, at least in part, 

upon their previous experiences. In this case, for many students, everyday life may not have 

given them a previous example because they have only encountered cases in which moving 

something from one group to another made one group better and the other worse. For some, it is 

counterintuitive because they are implicitly making an assumption about the distribution of 

values in the two groups.  

 

One way to help students understand this is by providing specific examples. If a person believes 

that X is impossible, it only takes one specific example of X to disprove that belief. 

 

One example: Suppose you have 2 groups of dogs. Group A has three dogs weighing 30, 150, 

and 150 pounds for a mean of 110 pounds; Group B has three dogs each weighing 10 pounds, so 

the mean is 10 pounds. Which dog would you move from Group A to Group B to increase the 

mean weight of both groups? If the 30-pound dog is moved from Group A to Group B, then 

Group B’s mean weight increases above 10 pounds to 15 pounds and Group A’s mean weight 

increases from 110 pounds to 150 pounds.  

 

Another example happens when the barrier between groups is changed, as shown in Figure 1. 

The original cutoff between large and small fish is the dashed green line. If the cutoff between 

large and small fish is shifted to the solid orange line, then the mean size of both the small fish 

and the large fish increases.  

 

 



 
 

     Figure 1. Example of changing the cut off yielding a Will Rogers Phenomenon 

 

Students can be encouraged to create their own fictional examples of the Will Rogers 

Phenomenon. As they do so, they will probably discover that for this to occur, one must move a 

value that is between the means of the two original groups. High school students might even be 

able to prove that. Note that these conditions are necessary, but not sufficient (and having the 

students find examples where it is not sufficient might be an engaging activity). 

 

In addition, the students could see if they can create examples from their class. One could divide 

the class into two groups (e.g., left side vs. right side, front vs. back, first half vs. second half of 

the alphabet for the first letter of first or last name, or birthdate in the first half or second half of 

the month). Then they could consider some “property” (e.g., height, number of vegetable 

servings per day for each person, number of pets at home). For which cases is it possible to move 

someone from one group to the other (e.g., from left to right) and create a Will Rogers 

Phenomenon where both group means change in the same direction?  

 

High school students might be more engaged by thinking about changing cutoffs in different 

situations. In Figure 2, we have people with and without a difficult-to-quantify trait, represented 

as circles and squares, respectively. We have a surrogate approximate measure for the desired 

trait on a scale of 0 to 10. There is one circle and no squares at 10. There is one square and no 

circles at 3, and there are 5 circles and 5 squares at 6. With an initial cutoff of 9, 100% of the 

people above 9 have the trait and approximately 50% of the people below 9 have the trait. If the 

cutoff is lowered from 9 to 5, then about 50% of the people above the cutoff have the trait and 

0% below the cutoff have the trait, lowering the percentages for both groups. One can do this for 

surrogate measures for health (e.g., blood pressure, cholesterol level, servings of vegetables) or 

surrogate measurements for “good” students such as GPA or standardized exam scores or other 

parameters. 

 
Figure 2. Another example of changing a cutoff yielding a Will Rogers Phenomenon.  

 

Simpson’s Paradox  

Here is a traditional incomplete wording of the Simpson’s Paradox: A and B play separate games 

of solitaire in the morning and in the afternoon. During the morning session, A won a higher 

percentage of their games than B did. During the afternoon session, A again won a higher 

percentage of their games than B did. Yet, when combining the morning and afternoon sessions, 



 
 

B won a higher percentage of their games than A. For most of us, this initially seems 

counterintuitive.  

 

Simpson’s paradox describes a phenomenon in which a trend appears in several groups but 

disappears when the groups are combined. In working out an intuitive explanation for this, we 

realized that part of the problem is that the wording is incomplete. Indeed, if all the information 

were to be presented, either verbally or visually, we think most would find it intuitive. For 

others, they might be adding fractions incorrectly. 

 

For example, it can help to provide concrete information: In the morning session, A won 1 game 

out of 4 games that A played and B did not win the 1 game that B played. In the afternoon 

session, A won the 1 game that A played and B won 3 of the 4 games that B played. However, 

when combining both sessions, A won 2 games out of 5 played and B won 3 games out of 5 

played. 

 

Using fractions, students can identify that in the morning session, A’s success rate of 1/4 is 

greater than B’s success rate of 0. In the afternoon, A’s success rate of 1 was greater than B’s 

success rate of 3/4. However, for the combined sessions, A only had a success rate of 2/5 and B’s 

success rate of 3/5 is clearly higher. Some students may initially assume that A’s success rate is 

1/4 + 1 and B’s is 0 + 3/4, suggesting there is no paradox as A’s success rate is still higher than 

B’s. This illustrates a common problem when adding fractions. 

 

When either providing students with other examples or asking them to create their own example, 

if using small numbers, we have found it easiest to demonstrate Simpson’s Paradox to students if 

B’s morning games have a win rate of 0%, and A’s afternoon games have a win rate of 100%. 

An extreme example using large numbers is:  

 

● In Session 1, A succeeds 1 time with 999 attempts and B has no success in 1 attempt.  

● In Session 2, A succeeds 1 time with 1 attempt and B succeeds 998 times with 999 

attempts. 

 

This allows us to show that in each of the sessions, A has a higher win rate than B. However, 

when combining the sessions, A succeeds only 2 times out of 1,000 attempts and B succeeds 998 

times out of 1,000 attempts. 

 

Figure 3 is a visual representation of the phenomenon. It shows the success rates of two people 

playing solitaire during morning and afternoon recess. In this figure, each game is shown as a 

circle. Person A is represented by the top circles with a heavy dashed outline and Person B is 

represented by the bottom circles with a solid outline. Winning games are represented by filled 

orange circles, and losing games are represented by unfilled gray circles. The morning results are 

shown on the left and the afternoon results are shown on the right. It is visually clear to many 

students that A had a higher win percentage in both the morning (0.1 vs. 0) and afternoon (1 vs. 

0.99), yet for the day, B had a higher win percentage (2 out of 11 vs. 199 out of 201). 



 
 

 
Figure 3. Simpson Paradox example illustrated  

 

The same figure could also represent two trials of two drugs, A and B. In this figure, each patient 

treated is shown as a circle. A patient treated with Drug A is represented by a circle with a 

dashed outline, and a patient treated with Drug B is represented by a circle with a solid outline. If 

the patient has a positive response to the drug, its circle is filled with orange, and if it is negative, 

it is kept gray and empty. The first trial is shown on the left, and the second trial is shown on the 

right. It is visually clear to many students that the percentage of patients that responded 

positively to Drug A was higher than Drug B in both separate tests, but when the tests are 

combined, a higher percentage of patients responded positively to Drug B. 

 

A real-life example is the incidence of mental distress among gamers. A recent study (Finserås et 

al., 2022) found that recreational gamers reported less mental stress than non-gamers. The study 

also reported the responses for self-identified males and females. When looking at males and 

females separately, recreational gamers actually reported more mental stress than non-gamers. 

This is in part because many more of the recreational gamers self-reported as male, and female 

respondents were more likely to report higher levels of stress, causing the Simpson’s Paradox. 

For the total population, recreational gamers had slightly less mental distress (0.308) than non-

gamers (0.315). However, considering each gender separately, recreational gamers had more 

mental distress than non-gamers (for females, 0.48 vs. 0.34, for males, 0.18 vs. 0.16).  

 

Another recent real-life example of Simpson’s paradox concerns the recent COVID-19 pandemic 

(von Kugelgen et al., 2021). When examining the preliminary fatality rates of COVID infections, 

the rate was lower in Italy than China for each age group, but the total fatality rate for Italy was 

higher than for China. For example, the fatality rate for the whole population of China was half 

that for Italy. However, for ages 50-59, China had a 5 times higher fatality rate than Italy, and for 

ages 60-69, China had a 1.6 times higher fatality rate than Italy. The authors of the study suggest 

that this is due, in part, to the different distribution of people in different age groups in the two 

countries, but they also felt that a difference in testing patterns or social contacts for different 

ages could also have played a role. 

 

To further engage, students could look for or create situations where Simpson’s Paradox occurs. 

For example, for sports statistics, such as batting averages or points per game, Player A may 

have higher numbers in the first and second half of the season than Player B, but for the whole 

season, Player B has the higher numbers. As shown in our examples, finding a case of Simpson’s 



 
 

Paradox in real life can be challenging, but one approach that can help is to think about potential 

confounding variables.  

 

False Positive Paradox 

One hundred percent accurate tests are considered the gold standard. However, often it is too 

expensive, inconvenient, risky, or invasive to do a 100% accurate test. So a screening test is 

done, which is not 100% accurate. A false positive on a screening test is when the subject tests 

positive but does not have the condition being tested for. For example, in medicine, one might 

have a positive screening test result for a particular cancer, but further tests indicate the patient 

does not have cancer. The false positive paradox occurs when a test is highly accurate, yet the 

subject with a positive test result is still unlikely to have the condition.  

 

A major problem of this paradox is the wording. For conditions or diseases, the term “test 

accuracy” is about how well the test separates those that have the condition or disease from those 

that don’t. This is different from “test predictivity.” However, “test accuracy” is often interpreted 

in the lay sense of how well the test predicts whether the person has the condition or disease.  

 

A clearer and more complete statement would be that screening tests are evaluated as the ratio of 

those who have the condition and test positive divided by all those that have the condition (i.e., 

test sensitivity). In contrast, when determining the probability that one actually has the condition 

if they tested positive (i.e., a true positive), the fraction has the same numerator but there is a 

different denominator, that is, all those that have tested positive. 

 

In the past false positives have been a problem for rare congenital diseases. Phenylketonuria 

(PKU) is the most common inborn error of amino acid metabolism in the U.S. Note all the 

qualifiers in that sentence—not only inborn, but also metabolic-involving amino acids (there are 

only 20 amino acids). Yet, the March of Dimes reports PKU is a rare condition: it only occurs in 

about 1 in 10,000 babies born in the US. For more about rare diseases, consult this mini-course 

by the National Organization for Rare Disorders.  

 

Suppose the test sensitivity is 100%, which means that all who have PKU test positive. 

Furthermore, suppose the test specificity (or the percentage of those who do not have PKU that 

test negative) is very high, 99%. Table 1 shows that 100 people will test positive, even though 

only 1 in 10,000 people have PKU. These 100 undergo further screening and eventually all but 

one of their parents discover the baby does not have PKU; 99% were false positives. This type of 

scenario highlights the stress the parents may feel from a false positive test result contrasted with 

the assurance that the screening test will detect cases of PKU.  

 

 have PKU do not have PKU 

PKU test positive 1 99 

PKU test negative 0 9900 

 

Table 1. Two by two table of PKU testing outcomes. 

 

https://www.marchofdimes.org/find-support/topics/birth/pku-phenylketonuria-your-baby#:~:text=In%20the%20United%20States%2C%20about,Ashkenazi%20Jewish%20or%20Japanese%20people
https://learn.rarediseases.org/courses/intro-rare-diseases/


 
 

 

Once the concepts are understood, it may be appropriate to provide the standard (jargon) terms 

used in the literature: 

 

• Sensitivity is the ratio of those that test positive and have the condition to all those that 

have the condition.  

• Specificity is the ratio of all those that test negative and do not have the condition to all 

those that do not have the condition.  

• In contrast,  

• Positive Predictive Value is the ratio of those that test positive and have the condition to 

all those that test positive—the same numerator as sensitivity but a different denominator.  

• Negative Predictive Value is the ratio of all those that test negative and do not have the 

condition to all those that test negative—the same numerator as specificity but a different 

denominator.  

 

To engage the students further, they can look for examples of false positive rates that can cause 

possible concerns, or different people can weigh the risks of the adverse effect of a false positive 

with the adverse effect of missing a true positive. For example, shortly after 9/11, there was an 

attempt to screen for terrorists by the color of their shirt. The number of terrorists is very small 

compared to the number of airline passengers, so no matter what color one would pick, the 

chance that the person wearing that color was NOT a terrorist would be overwhelmingly high 

(see the excellent discussion by the Cato Institute). Screening for diseases has a similar problem 

as screening for security and safety. At what point should the anxiety and extra testing of having 

too many false positives outweigh the benefit of catching a few more people with the disease? 

Criminal profiling can also have a similar problem.  

 

Birthday Problem  

The birthday problem (or paradox), which may be familiar to teachers, involves the following 

question: How many people need to be in a room so that the probability that at least two of them 

have the same birthday is about 50%? The answer of 23 surprises many people. While the 

mathematics of the answer is interesting, we want to talk about a different aspect of the problem: 

why the answer was not intuitive to us. As we were modeling the problem with smaller numbers, 

we realized that our intuition was thinking about this problem: In a room with 22 people that 

don’t share a birthday, a 23rd person arrives. And our intuition, correctly, led us to this line of 

reasoning: The probability is 23 out of 365, 6.03%, or about 1 out of 16.5 that the 23rd person 

shares a birthday with one of the previous 22. Another way to think about this is that the 

probability that the person does NOT share a birthday with anyone else in the room is 1 - 

(22/365). 

 

Given this insight, we developed another way to present the birthday paradox. We realized that 

demonstrating with a 50% probability is problematic; in a class of 23, there is little use in 

surveying a class to show how common a shared birthday is as half the time there is no match, 

and the students are not convinced of the surprisingly common result. So, we prefer an example 

asking how many people are needed for a more than 90% chance of at least one match. Since the 

problem is general and not unique to 365, we suggest rather than asking about whether the birth 

month and day of month match, just ask if the day of the month matches. We demonstrate this 

https://www.cato.org/regulation/winter-2012-2013/screening-tests-terrorists


 
 

with a deck of 30 cards, numbered 1 to 30, making the simplifying assumption that all 12 months 

have 30 days. In this game, one draws a card, writes down the number, and returns the card to 

the deck and shuffles. This is repeated. The game stops (and the player “wins”) when the same 

number is drawn twice as recorded on the sheet.  

 

Suppose we have 30 cards numbered 1 to 30. We want to calculate the probability of NOT 

having a match. 

 

Turn 1. Because this is the first turn and no cards have been previously picked, the probability of 

not having a match on Turn 1 is 1. You pick a card, say 1.  

 

Turn 2. On this pick, there is a 29 out of 30 chance of NOT picking a 1 and therefore not having 

a match on Turn 1 AND Turn 2. Let’s say you got a 2.  

 

Turn 3. There is a 28 out of 30 chance of you not picking a match (a 1 or a 2) ON THIS TURN.  

BUT the probability of not picking a match on Turn 1 AND Turn 2 AND Turn 3, is 1 * 29/30 * 

28/30 = 0.90. Say you got a 3.  

 

Turn 4. On this pick, there is a 27 out of 30 chance of NOT picking a match (1 or 2 or 3) ON 

THIS TURN. BUT the probability of not picking a match on Turn 1 AND Turn 2 AND Turn 3 

AND Turn 4 is 1 * 29/30 * 28/30/ * 27/30 = 0.81 

 

And so on. 

 

If one gets to Turn 15, our intuition is right in that the probability of not picking a match ON 

TURN 15 is about 15/30. However, the probability of not picking a match on all turns up to 15 is 

almost 0, that is, by this point you are almost guaranteed to pick at least one match and win. 

These probabilities for each turn are summarized in Figure 4. 



 
 

 

Figure 4. Probability of a match for this turn and cumulative probability.  

 

We think the birthday problem can be more intuitive by providing more information. For 

example, one can start with the intuition: In a room with 22 people that don’t share a birthday, a 

23rd person arrives. The probability is 22 out of 365, or about 1 out of 16.6 that the 23rd person 

shares a birthday with one of the previous 22. However, the probability that the first 22 people 

don’t share a birthday is just over 50%, because as each person arrives after the first, a match 

may occur, and the chance of matching accumulates as each person is added.  

 

The insights from the birthday problem can also be applied to rare diseases. In the U.S. the legal 

definition of a rare disease is a condition that affects fewer than 200,000 people. With a 

population of 333 million, this means that a singular rare disease strikes fewer than 1 in 1,600 

people. So, the chance that a person-with-rare-disease-A meets a randomly selected person that 

has the same rare-disease-A is less than 1 in 1,600. In contrast, because there are 5,000 to 10,000 

rare diseases, meeting someone with some rare disease is about 8%! Thus, considering the 

probability of having a singular rare disease is not the same as taking into account all rare 

diseases, much like careful analysis of the birthday paradox reveals the importance of each 

additional person in the room adding to the probability of at least one birthday match. To phrase 

both situations using a parallel construction, the probability that you have the same birthdate 

(month/date) as a random person is 1 in 365. But the probability that at least two people in a 

room of 23 have the same birthday is about 1 in 2. The probability that a person with rare disease 

A meets a random person that has the same rare disease A is about 1 in 1,600. But the probability 

that a person with rare disease A meets a random person with SOME rare disease is about 1 in 

12.  

 

Conclusion 



 
 

We presented four different paradoxes and shared different teaching techniques, such as 

rephrasing questions, thinking of analogies, and considering extreme situations, to support 

student intuition. For example, for some students, a more complete phrasing can counteract the 

counterintuitive nature of these paradoxes. We note the term, “more complete phrasing” also 

includes the fact that reduced fractions, decimals, and percentages can be considered incomplete 

in the sense that, ½ can have a different effect on the analysis than 50/100, as seen particularly 

with the Simpson and False Positive Paradoxes. Since ratios, rates, percentages, and means are 

all essentially fractions, students should learn to be careful when only the reduced fraction is 

presented. Decimal fractions and simplified fractions hide information—without knowing the 

size of the denominator, results can appear counterintuitive, but when all the information is 

provided, often the result is not surprising. In the case of the Birthday Paradox, the reader is 

making assumptions that the presenter was not. It may be the case that leaving out the critical 

information was not intentional, but it can still lead to confusion.  

 

The strategy of examining an extreme case, either very large or very small, can also make the 

possibility of a paradox more obvious to students without the need to do complicated arithmetic 

calculations or use a calculator. This strategy of examining an extreme situation is not only 

useful for mathematical and statistical puzzles but also in many areas of science; for example, in 

biology, studying creatures that live in extreme conditions can lead to insights into physiology.  

 

As illustrated, these different teaching techniques can be used within the context of common 

paradoxes to help support middle and high school students’ understanding, confidence, and 

abstract reasoning skills. 
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