
How MAD Must We Be? A Robust Test for Identifying
Meaningful Differences Using the Mean Absolute
Deviation
Jon Hasenbank and John Appiah Kubi

Grand Valley State University, Allendale, USA

*Corresponding author: hasenbaj@gvsu.edu

1. Introduction

Middle school students’ introduction to statistical thinking includes understanding the central role
that variability plays in data investigations. In theCommonCore State Standards (CCSS), which paral-
lel the recommendations of the Pre-K-12 Guidelines for Assessment and Instruction in Statistics Educa-
tion II (GAISE II), sixth graders are introduced to the mean absolute deviation (MAD) as an important
tool for measuring variability in quantitative data (CCSS.6.SP.A.1, CCSS.6.SP.A.3, CCSS.6.SP.B.4). The
MAD serves as an age-appropriate precursor to the standard deviation; it represents the average
distance from the mean and is calculated similarly to the standard deviation:

MAD =
∑ |observed – mean|

n
, SD =

√︄∑
(observed – mean)2

n – 1

We demonstrate in this article how the MAD can be used in ways similar to the standard deviation
to determine whether a difference is meaningful.

The seventh grade CCSS standards build on the concepts developed in grade six to engage students
in informal statistical inference. Students progress from describing data to understanding how data
from samples can be used to estimate population parameters, and they compare samples and discuss
whether there is a meaningful difference between them. In doing so, students “assess the degree of
visual overlap” between two distributions to make “informal comparative inferences”, and they “[ex-
press] the difference between the centers as a multiple of a measure of variability” (CCSS.7.SP.A.2,
CCSS.7.SP.B.3, and CCSS.7.SP.B.4). These recommendations are consistent with the GAISE II develop-
mental framework: at Level A, students use graphs to visually compare groups; at Level B, they use
informal reasoning to compare groups while noting the uncertainty caused by sample-to-sample
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variability; and at Level C, students learn to use probability to make inferential comparisons and
determine the likelihood that observed group differences could be due to chance alone.

In practice, conducting middle school data investigations in which students make “informal com-
parative inferences” about two data distributions can be challenging because such investigations
often lead to cases where the degree of visual overlap and the calculated difference between the
centers do not clearly indicate whether the difference is “meaningful” or not. In statistical terms,
deciding whether we have a meaningful difference requires evaluating whether the difference is so
large that it is unlikely the samples could have been drawn from the same population – in which
case, statisticians say they “reject the null hypothesis” in favor of the alternative hypothesis that the
source populations must have been different. Unfortunately, precise age-appropriate heuristics for
identifying a meaningful difference are largely absent from middle school curricula and statistics
education literature. The GAISE II report and the CCSS standards recommend students collect real
data through investigations they have helped design. In such investigations, edge cases are bound
to arise, which can leave teachers scrambling to provide closure: “Is this difference meaningful? It’s
hard to say!”

TheGAISE II framework outlines a progression bywhich students learn to quantify such uncertainty.
Students use simulations to develop intuition about sampling variation, p-values, and confidence in-
tervals before learning to use formal hypothesis tests (e.g., t-tests). But because the formal tests are
not available to middle school students and their teachers, curriculum authors resort to intuition
(“Do you think there is a meaningful difference?”) or use canned data sets or contexts that minimize
the likelihood of edge cases arising from the analysis. Even though the GAISE II report recom-
mends students learn to embrace ambiguity when learning statistics, and even though anticipating
uncertainty is at the very heart of a good statistical question (see What Is A Statistical Question? at
Census.gov), it can be dissatisfying if too many data investigations conclude with a soft “maybe”.

What is a ‘Meaningful Difference’?

Before proposing a new heuristic for determining a meaningful difference, let us examine examples
from the Common Core State Standards, from the GAISE II report, and from a published Statistics
Teacher lesson plan, to see how each treats the question of whether a difference is meaningful. [Note:
For simplicity, we will use the term “meaningful” as synonymous with “statistically significant”, but
we should remember that even a small difference can turn out to be statistically significant under
the right conditions (e.g., very low within-group variability or very large sample sizes). Whether a
difference is truly meaningful (i.e., important) always depends on the underlying context.]

The CCSS middle school standards provide two scenarios suggesting ways students might decide
the question of whether a difference between groups is meaningful. Both are nicely grounded in
context, but neither provides a clear heuristic; instead, they rely on intuitive phrases like “generally
longer” and “noticeable separation”:

[Students will] draw informal comparative inferences about two populations. For example,
decide whether the words in a chapter of a seventh-grade science book are generally longer
than the words in a chapter of a fourth-grade science book. (CCSS.7.SP.B.4)

Themean height of players on the basketball team is 10 cm greater than themean height of play-
ers on the soccer team, about twice the variability (mean absolute deviation) on either team; on
a dot plot, the separation between the two distributions of heights is noticeable. (CCSS.7.SP.B.3)

Note the hint of a “twice the variability” heuristic in the second example, which we will return to
shortly.

The GAISE II report uses language similar to the CCSS, but it provides more detailed examples to
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illustrate. For instance, two examples of Level B data investigations (Level B is closely aligned with
the CCSS middle school standards) are included; both use the context of comparing beak sizes of
Medium Ground finches (MGF) and Cactus finches (CF) from the Galapagos Islands. The examples
include comparative dot plots and box plots created for two samples (see Figure 1 and Figure 2,
respectively):

Figure 1. MCF and CF beak length comparison from GAISE II (p. 56)

Figure 2. MCF and CF beak depth comparison from GAISE II (p. 58)

As Figure 1 shows, the beak length distributions have almost no overlap between the species (show-
ing a clear difference), whereas the beak depth distributions shown in Figure 2 overlap almost en-
tirely (showing no meaningful difference). In such cases, informal analysis of the group differences
is sufficient, as articulated in the sample analyses included in the GAISE II report:

[For the beak length data:] Considering that the middle 50% of the CF data does not overlap

https://www.amstat.org/docs/default-source/amstat-documents/gaiseiiprek-12_full.pdf
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with the middle 50% of the MGF data, it would be reasonable to say that in the general finch
population, CF beak lengths tend to be greater than MGF beak lengths (p. 56).

[For the beak depth data:] There is no obvious indication as to whether the beak depth of the
Medium Ground finches on the Galapagos Islands is greater than or less than the beak depth of
the Cactus finches on the Galapagos Islands. The mean beak depth differs by 0.19 mm, which
is relatively small for the data given (p. 58).

The CCSS example hints at a “twice the variability” heuristic. The GAISE II examples refer to the
middle 50% (the “boxes” of the boxplots) not overlapping. But neither provides concrete guidance
that can help teachers and students decide scenarios where there is partial overlap.

The “twice the variability” heuristic appears in amore concrete way in the 2023 lesson plan Exploring
Whether a Difference Is a Meaningful Difference authored by Tim Jacobbe, Christine Franklin, Gary
Kader, and KacieMaddox and published in the Statistics Teacher. In it, students collect classroom data
to address the question: “Is there a meaningful difference in the number of times students can write
their name in 60 seconds with their dominant versus their non-dominant hand?” The teacher’s guide
includes some sample data and states a clearly articulated “twice the variability” rule for deciding
whether the results represent a meaningful difference:

A common rule is that if the difference between two centers is more than 2 multiples of a
measure of variability, then it is a meaningful difference. For example, the difference between
two medians should be 2 times the IQR in order to be considered meaningful. The difference
between two means should be 2 times the MAD in order to be considered meaningful (p. 7).

The “twice the variability” rule, or 2x rule for short, can be supported by examining a t distribution
withα = 0.05 and a large, fixed degrees of freedom. This simplification by the authors has the benefit
of avoiding discussions about how sample size affects the sampling distribution of the mean (see this
excellent visualization by Chris Wild). If we use the standard deviation as our measure of variation,
we can see why the 2x rule is reasonable: the magnitude of x̄1–x̄2

s is less than the two-sample pooled
t statistic, t = x̄1–x̄2

s
√
(2/n)

, because for n > 2, the standard deviation s is greater than the standard error

s
√︁
(2/n). Moreover, the 2x rule becomes increasingly conservative as sample size increases: it will

identify fewer and fewer meaningful differences than a t-test as the sample size grows.

From this point forward, whenever we use the 2x rule based on the MAD, we will use the variable k
to refer to the ratio k = x̄1–x̄2

MAD . The Meaningful Difference lesson teacher’s guide recommends using
the larger of the two MADs when expressing the mean difference as a multiple of the MAD. For
the sample data provided in the teacher’s guide (Figure 3), the means (and MADs) are 23.1 (4.6) and
10.5 (2.2) names per minute for the dominant and non-dominant hands, respectively. We calculate
k = 23.1–10.5

4.6 = 2.7, and because k > 2, we conclude that the difference is meaningful. Indeed, an
independent samples t-test confirms that result: at the 95% confidence level, with df = 24 and
t = 6.95, we obtain p < 0.0001 (confidence interval = [8.813, 16.26]). But this is an extreme case.

https://www.statisticsteacher.org/2023/03/23/meaningful-difference/
https://www.statisticsteacher.org/2023/03/23/meaningful-difference/
https://www.stat.auckland.ac.nz/~wild/WPRH/
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open in CODAP

Figure 3. Original data from the Meaningful Difference teacher guide

To obtain an edge case, we used CODAP’s Scrambler plug-in to shuffle the labels (Dominant vs.
Nondominant) for the frequency data in Figure 3, which yielded the data displayed in Figure 4 (access
both data sets in CODAP). The shuffled data constitutes an edge case because there is evidence of a
difference – e.g., the five greatest outcomes were associated with the dominant hand – but there is
a fair amount of overlap between the distributions. A t-test returns a statistically significant result
(n = 26, t = 2.44, p = 0.022, 95%CI = [1.062, 12.63]), but the difference is not meaningful according to
the 2x rule: k = 20.2–13.4

6.7 = 1.01 < 2. If these results were obtained as part of theMeaningful Difference
data investigation, we would conclude the difference was not a meaningful one, contrary to the
results of the t-test.

open in CODAP

Figure 4. Scrambled data from the Meaningful Difference teacher guide

A MAD alternative to the t-test:

To better address the edge cases, we have developed a middle school-appropriate test based on the
MAD that improves upon the 2x rule without requiring knowledge beyond what is expected in the
Common Core State Standards for Grades 6 and 7. Teachers and students may use this new “k-test”

https://codap.concord.org/app/static/dg/en/cert/index.html#shared=https%3A%2F%2Fcfm-shared.concord.org%2FrHifsduRMoGDETJyMJwp%2Ffile.json
https://codap.concord.org/
https://codap.concord.org/app/static/dg/en/cert/index.html#shared=https%3A%2F%2Fcfm-shared.concord.org%2FrHifsduRMoGDETJyMJwp%2Ffile.json
https://codap.concord.org/app/static/dg/en/cert/index.html#shared=https%3A%2F%2Fcfm-shared.concord.org%2FrHifsduRMoGDETJyMJwp%2Ffile.json
https://codap.concord.org/app/static/dg/en/cert/index.html#shared=https%3A%2F%2Fcfm-shared.concord.org%2FrHifsduRMoGDETJyMJwp%2Ffile.json
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to reliably decide whether their data investigations have found a meaningful difference.

Where investigations like theMeaningful Difference lesson plan run into trouble is when it comes to
interpreting the k value, or the difference between the means expressed as a multiple of the MAD
(CCSS.7.SP.B.3). To handle edge cases, we need to answer the question, “How large must k be for the
difference to be statistically significant?” No constant threshold like the 2x rule will work reliably:
a constant threshold would not account for the expected decrease in variability in the sampling
distribution of the mean as sample size increases.

It turns out a MAD-based analog to the t distribution exists, though it is not commonly covered in
undergraduate statistics texts. It is the H distribution, named for statistician Erna Herrey (pictured
in Figure 5), who derived it in her 1965 paper, Confidence Intervals Based on the Mean Absolute De-
viation of a Normal Sample. Herrey’s results, together with a key formula from Revets in One-norm
misfit statistics (2009), allow the derivation of a formula, kn,α = t2n–2,α ·

√︁
π/(n – 1), for calculating

the threshold value kn,α corresponding to a statistically significant t-test with sample size n and
significance level α. This interactive Google Sheet automates the calculation of the k-critical value
for any n and α, and Table 1 shows the particular k-critical values for a handful of common sample
sizes at the α = 0.05 significance level. For details on our derivation of the k-critical value formula,
see the sidebar.

Figure 5. Photo of statistician Erna Herrey (Wikipedia Commons)

Table 1. k-critical values (α = 0.05) for select sample sizes

sample size (each sample) k-critical value

10 1.241
11 1.169
12 1.108
13 1.056
14 1.010
15 0.970
...

...
20 0.823
30 0.659
60 0.457

120 0.320

For the Meaningful Difference sample data, we previously calculated k = 2.7, which exceeded the 2x
rule threshold, and we confirmed the difference was significant using a conventional t-test. Table 1

https://www.thecorestandards.org/Math/Content/7/SP/#CCSS.Math.Content.7.SP.B.3
https://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480788
https://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480788
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL039808
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL039808
https://docs.google.com/spreadsheets/d/1v_2X2cEHNnW4unX0TiQQWtoSODFJ898VGwm9kDkLPic/edit?gid=934554216#gid=934554216
https://commons.wikimedia.org/wiki/File:Erna_Herrey_nee_Vohsen_1941.png
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supports the same conclusion: compare k = 2.7 with the k-critical value for n = 13, kcrit = 1.056;
because k = 2.7 exceeds the threshold, the difference is statistically significant. Table 1 reveals how
conservative the 2x rule is, where a gap of just 1.056 MADs is sufficient for n = 13 at the α = 0.05
statistical significance level.

Recall the calculation of k was based on the conservative choice to use the larger of the two MADs
as the denominator. Our derivation of k-critical values does not require making that conserva-
tive choice. Instead, we follow Herrey’s recommendation to use the average MAD (analogous to
a “pooled” standard deviation), rather than the greatest MAD, to calculate k. To see the benefit of
using the pooled (average) MAD, consider again the scrambled data from the Meaningful Difference
lesson (Figure 4). Using the greatest MAD leads to k = 1.01, which does not quite exceed kcrit = 1.056
from Table 1. However, if we calculate k using the pooled MAD, we find MADp = 4.6+6.7

2 = 5.65 and
k = 20.2–13.4

5.65 = 1.20. This new k-value exceeds the 1.056 threshold from Table 1 and so we can con-
clude the difference is meaningful, just as the t-test suggested. The use of a pooled MAD allows us
to detect smaller significant differences than would be possible if we had to use the maximumMAD.

To test the validity of our k-test algorithm, we used a software package to generate 1,000 pairs
of independent random samples from normal populations and recorded how frequently our k-test
agreed with an independent samples t-test. The results of three such simulations are shown in
Table 2, Table 3, and Table 4, for several combinations of sample sizes and population parameters
(note: in the tables, N (µ,σ) refers to a normal distribution with mean µ and standard deviation σ).
In each case, the results show agreement rates of 99.5%, 99.7%, and 97.9%, respectively. The few trials
in each run where the tests disagree are cases where the p-values closely straddle the significance
threshold (e.g., p = 0.052 vs. 0.049). We interpret these results as providing further validation of our
derived k-test algorithm.

Table 2. t-test vs. k-test simulation, n = 30, sampling from N (0, 2): 99.5% agreement with t-test

t-test
k-test Not significant Significant

Not significant 956 3
Significant 2 39

Table 3. t-test vs. k-test simulation, n = 15, sampling from N (0, 2) and N (3, 2): 99.7% agreement with t-test

t-test
k-test Not significant Significant

Not significant 23 1
Significant 2 974

Table 4. t-test vs. k-test simulation, n = 40, sampling from N (0, 2) and N (1, 2): 97.9% agreement with t-test

t-test
k-test Not significant Significant

Not significant 390 12
Significant 9 589
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Sidebar:

In One-norm misfit statistics (2009), Revets provides the
following key formula relating the standard deviation s to
the mean absolute deviation d:

s ≈ d
√︂

π

2

( n
n – 1

)
With Revets’ formula, we can derive the distribution of

k = x̄1 – x̄2
dp

from the t-distribution.
Given two independent samples of size n with means x̄1
and x̄2, pooled standard deviation sp , and pooled MAD

dp = d1 + d2
2 ,

assuming equal variances, the standard error for the t
statistic is given by:

SE = sp

√︂
2
n
, where sp ≈ dp

√︂
π

2

( n
n – 1

)
Thus,

t = x̄1 – x̄2
SE

= (x̄1 – x̄2)

sp
√︃

2
n

≈ (x̄1 – x̄2)(
dp
√︃

π
2
( n
n–1

) ) √︃ 2
n

= k√︃
π
n–1

So,

t = k√︁
π/(n – 1)

⇒ k = t ·
√︂

π

n – 1

Thus, the k-critical values found in Table 1 and in our in-
teractive Google Sheet can be calculated directly from the
t-distribution as:

kn,α = t(2n–2),α ·
√︂

π

n – 1

Conclusion

We have presented a robust analog to the in-
dependent samples t-test that middle school
students and their teachers can use to deter-
mine whether their data investigations con-
tain meaningful (statistically significant) differ-
ences. The calculation of k = x̄1–x̄2

MAD is pre-
cisely what is prescribed in the Common Core
State Standards for Grade 7, and our work pro-
vides concrete threshold values for determin-
ing whether a particular k-value corresponds
to a statistically significant difference. We have
demonstrated that k-critical values for two sam-
ples of size n can be calculated directly from the
t-distribution as kn,α = t(2n–2),α ·

√︁
π
n–1 , allowing

us to find precise cut-offs that take sample size
into account (in cases where the sample sizes
are different, the lesser sample size can be used
to identify a conservative threshold).

To be clear, we are not advocating for middle
school curricula to begin presenting k-tables
like Table 1 to students. Both GAISE II and the
CCSS standards focus on developing students’
intuition and conceptual understanding about
the role of variability in statistical inference.
The idea that “samples jump around” – i.e., that
small samples tend to vary more from their
source populations, as illustrated in the visual-
izations by Chris Wild – is only just emerging at
this level. Instead, we propose using the MAD-
based kn,α formula to generate kcrit values that
serve as guidelines for determining meaningful
differences when comparing two independent
random samples. For example, our formulation
lets us say with precision:

• For samples of size 15, our formula gives kcrit ≈ 0.970. Therefore, a mean difference (x̄1 – x̄2)
greater than about 1 MAD will make k = x̄1–x̄2

MAD > 0.970, and so should be considered meaningful
(i.e., significant at the α = 0.05 level).

• For samples of size 30 (kcrit ≈ 0.659), a mean difference greater than about 2
3 MAD is meaningful.

• For samples of size 50 (kcrit ≈ 0.502), a mean difference greater than about 1
2 MAD is meaningful.

In each case, the MADs may be taken either as the average MAD (typically) or as the greater MAD
(conservatively, and especially if one MAD is more than double the other MAD). Thresholds based
on other significance levels (e.g., α = 0.01) and sample sizes can be easily calculated using the kn,α
formula provided above or by using this interactive Google Sheet.

Providing such concrete, sample-size-dependent rules of thumb means students and teachers can
bring closure to more of their data investigations, particularly those in which the differences seem

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL039808
https://docs.google.com/spreadsheets/d/1v_2X2cEHNnW4unX0TiQQWtoSODFJ898VGwm9kDkLPic/edit?gid=934554216#gid=934554216
https://docs.google.com/spreadsheets/d/1v_2X2cEHNnW4unX0TiQQWtoSODFJ898VGwm9kDkLPic/edit?gid=934554216#gid=934554216
https://www.stat.auckland.ac.nz/%7Ewild/WPRH/
https://www.stat.auckland.ac.nz/%7Ewild/WPRH/
https://docs.google.com/spreadsheets/d/1v_2X2cEHNnW4unX0TiQQWtoSODFJ898VGwm9kDkLPic/edit?gid=934554216#gid=934554216
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“noticeable” but are not extreme enough to pass conservative tests like the 2x rule. In fact, it is
formally correct – though not pedagogically necessary – for middle school teachers to use the
phrase “statistically significant” to describe results that contain a “meaningful difference”, because
our MAD-based test agrees with the corresponding t-test in nearly all cases. Moreover, the de-
pendence on sample-size opens the door to early wonderings by students about why using larger
samples allows statisticians to classify smaller differences as meaningful. Such wonderings can help
bridge the gap between informal and formal statistical inference.
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