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Overview of Lesson 
In this lesson students explore nonlinear regression models to explain fish weight using fish length, 
using both transformation of the response variable and polynomial regression. Geometric 
interpretations of variables are leveraged to suggest nonlinear models to fit. The intention of this lesson 
is for students to perform two or three linear regression analyses that feel like others that they have 
done before: the difference is that they draw on prior knowledge of geometric/physical relationships to 
suggest a modification to the first analysis to improve it. Because most of the nonlinear models 
considered in this lesson have only a single predictor variable, students’ familiarity with simple linear 
regression can be extended to nonlinear modeling. If students are familiar with multiple linear 
regression, then two additional polynomial regression models can be included.  
 
Type of Data 

 Two quantitative variables 
 Static dataset provided by lesson plan authors 

 
Learning Objectives 

 Students will propose and evaluate nonlinear models (transformation of response variable 
and/or polynomial regression) 

 
Audience 

 Students in a course that has a unit/chapter on linear regression in a statistical context, likely 
students in grades 9-14.  

 Prerequisites: Prior to this lesson, students should have experience with graphing polynomials, 
radicals (square roots and cube roots), simple linear regression, and assessing linear regression 
fit (at least heuristically). 

 
Time Required  
60 to 90 minutes, depending on the how familiar students are with regression modeling and the 
software you use.  
 
Technology and Other Materials 

 Technology: Data analysis software appropriate for conducting simple linear regression. To 
accommodate a variety of software tools and modeling approaches, several versions of the data 
files are included. These are described later. If no technology for analysis is available, sample 
computer output is included that can instead be provided to students.  

 “Low-tech” materials required: none, though depending on the students, it may be beneficial to 
have base-10 blocks or other cubes available to remind them of relationships among length, 
area, and volume, and to motivate the relationship between volume and weight. 
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Lesson Plan 
 
The goal of this lesson is to develop an appropriate model for fish weight using fish length as a 
predictor. This lesson is appropriate to use after students are familiar with analyzing bivariate datasets 
using simple linear regression and heuristically assessing model fit. Students will begin by analyzing a 
dataset using simple linear regression, assessing its fit, and determining that a model of the form 𝑦ො =
𝑏 + 𝑏ଵ𝑥 is NOT appropriate. Then, rather than stopping, a short review of geometric concepts is 
conducted. The idea of this review is for students to recognize two things: 1) a fish’s weight is closely 
related to the fish’s volume and 2) the units of volume are cubic millimeters. Together, this suggests 
we should explain fish weight with fish volume – a variable we don’t have – but re-expressing our 
explanatory variable so that it has the units of volume might be a productive path forward.  
 
Note: Throughout the lesson, the term weight is used for what is more properly described as mass. The 
original dataset uses the term weight but measures the fish using metric units for mass. The distinction 
is irrelevant to the lesson, but it would be reasonable to make the changes throughout the lesson if the 
distinction matters to you.  
 
Description of Dataset 
 
Scientists are interested in monitoring the health of trout perch in the 
Oil Sands Region of Canada.1,2 As part of a larger study, fish were 
collected from the Athabasca River and Peace River, and several 
characteristics were measured, including the Weight of each fish (in 
grams) and the Length of each fish (in millimeters). The dataset used in 
this analysis includes data from 2088 trout perch. The first six rows of 
this dataset are shown to illustrate what the file looks like.  
 
Initial Analysis (Simple Linear Regression) 
 
Ask the students to examine the relationship between fish Weight and 
fish Length using simple linear regression and to assess the 
appropriateness of the model. This can be done using any tools/technology that students have used in 
their previous experiences with regression.  
 
Students work in groups to analyze the dataset using simple linear regression and assess the model fit. 
Students record their decisions, results, and conclusions in the Simple Linear Regression section of the 
student handout. The questions they are asked to answer are: 
 

 What regression model will you fit to explain Weight using Length as a predictor?  
 What is the regression equation3? 

 
1 Environment and Climate Change Data Canada http://data.ec.gc.ca/data/substances/monitor/fish-health-toxicology-
contaminants-oil-sands-region/wild-fish-health-oil-sands-region/  
Data License: Open Government Licence - Canada 
2 Trout perch illustration by Ellen Edmonson and Hugh Chrisp - http://pond.dnr.cornell.edu/nyfish/fish.html, Public 
Domain, https://commons.wikimedia.org/w/index.php?curid=4974275  
3 Feel free to substitute the term prediction equation or fitted model depending on what has been used in class.  



 

 
Statistics Teacher/STatistics Education Web: Online Journal of K-12 Statistics Lesson Plans 3 
https://www.statisticsteacher.org/ or http://www.amstat.org/education/stew/  
Contact Author for permission to use materials from this lesson in a publication 

 What is the predicted (fitted) value for the fish with ID 4394? (See data excerpt on pg. 1) 
 What is the residual for the fish with ID 4394? 
 Interpret the slope. 
 Interpret the 𝑅ଶ value. 
 Examine the residual plots and comment on any potential problems. 

 
Depending on the type of statistics course this lesson is being used in, students may have informal or 
formal ways for assessing model fit. At a basic level, a scatterplot exhibits a clear curved (nonlinear) 
relationship between length and weight, as seen in this graph: 
 

 
 
Note that the weights of the shortest and longest fish tend to be underestimated by the regression 
model (because the regression line is below the points for the smallest and largest values of Length); 
the weights of average length fish tend to be overestimated by the model, though this is far less clear in 
this graph because of how many observations are in the dataset.4  
 
This can more clearly be seen in a Residuals vs. Fits graph.5 This is a type of residual plot (sometimes 
called a residual diagnostic plot).6 While many software packages include this as a standard regression 

 
4 See the Reflections and Additional Recommendations section at the end of the lesson plan for an extension to the lesson 
that focuses on the underestimation/overestimation for certain fish lengths.  
5 For simple linear regression, a scatterplot of the data with a fitted regression line and a Residuals vs. Fits graph can reveal 
essentially the same insights. The real advantage of residual plots is when more sophisticated models are used that cannot 
be easily visualized directly. Depending on what software you and your students are using, fitting models E and F below 
may result in difficulties visualizing the model fit. For these models, a Residuals vs. Fits graph is powerful tool for gaining 
insight about the model fit. Sometimes these graphs are referred to by similar names, such as Versus Fits (the term used in 
the Minitab output). 
6 See note at the end of the lesson about other residual plots. 
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plot, they can be constructed manually. To construct a Residuals vs. Fits graph, the fitted (predicted) 
value and residual must be calculated for each observation – a tedious task best-suited for computers. 
Then, a scatterplot is made with the residuals on the Y-axis and the fitted values on the X-axis; a 
horizontal line at 𝑦 = 0 is usually added.  
 
The ideal Residuals vs. Fits graph should have a horizontal scattering of points with no discernible 
pattern, with points approximately equally above and below the horizontal line throughout the entire 
range of the fitted values; a Residuals vs. Fits graph illustrating an ideal relationship using simulated 
data (randomly generated so that it has a linear relationship) is shown below. The Residuals vs. Fits 
graph for the original simple linear regression model differs from the ideal in two ways. First, there is a 
clear curved pattern, indicating the same nonlinearity observed in the scatterplot. Second, the spread of 
the residuals for low fitted values is smaller than the spread of the residuals for large fitted values – an 
issue known as non-constant variance.  
 

 
Two Residuals vs. Fits graphs: on the left, an example of one for data with an ideal linear relationship 

(simulated data); on the right, the graph created using the residuals for Model 0. 
 
Students can share their results and come to consensus about the appropriateness of the model in a 
manner that is typical for your class. Once students have analyzed the data using simple linear 
regression and determined that a linear model is likely NOT the most appropriate model to use, the 
lesson continues to the next stage.  
 
Activating Prior Knowledge and Planning 
 
The purpose of this stage is to activate students’ prior knowledge and determine a path forward in the 
analysis. Students continue in their same groupings to answer the questions in the Background section 
of the student handout. These questions ask them to sketch the shapes of simple polynomial equations 
(𝑦 = 𝑥, 𝑦 = 𝑥ଶ, and 𝑦 = 𝑥ଷ) and think of a rectangular prism as a simple approximation for the shape 
of a fish (to motivate the polynomial relationships used later in the modeling). 
 
There are two distinct paths forward for students that are both reasonable: transforming the response 
variable or including polynomial terms as predictor variables to address the curvature (polynomial 
regression). There are subtle differences in the approaches, but both can result in an appropriate model. 
In the following pages, transforming the response variable will be discussed first followed by 
polynomial regression. Depending on the amount of time available, you may wish to guide the students 
through only one of these possibilities – transformation of the response variable is the clear candidate 
for this as it may seem simpler and more accessible to students.  
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When looking at the shape of the scatterplot, it is reasonable for students to think the relationship is 
described by 𝑦 = 𝑥ଶ as it resembles half of a parabola. It is also reasonable for students to think that 
𝑦 = 𝑥ଷ is appropriate because it resembles part of the graph of a cubic function. These forms might be 
more familiar to students and suggest polynomial regression. However, students may also recognize 
that ඥ𝑦 = 𝑥 or ඥ𝑦య = 𝑥 might similarly be reasonable ways of expressing the relationship they see – 
these forms suggest a transformation of the response variable. Students should be encouraged to pursue 
either a 2nd- or 3rd-degree polynomial model or a transformation using square roots or cube roots. If 
there isn’t sufficient variety in the models that students select on their own, consider assigning certain 
models to groups of students. Ensuring that diverse models are covered (e.g., Models A, B, C, and D 
shown below) will lead to a richer discussion at the final stage of the lesson when students compare 
their results with classmates.  
 
Students should record the model they plan to fit in the New Model section of their student handout. In 
summary, the following models are all reasonable depending on the patterns that students identify. 
 

Label Model Description 

A ඥ𝑊𝑒𝚤𝑔ℎ𝑡


= 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ) 
Simple Linear Regression Model 
with Square Root Transformation 

B ඥ𝑊𝑒𝚤𝑔ℎ𝑡
య 

= 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ) 
Simple Linear Regression Model 
with Cube Root Transformation 

C 𝑊𝑒𝚤𝑔ℎ𝑡 = 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ)ଶ 

Quadratic Regression Model, 
without lower-order terms 

or 
Simple Linear Regression Model 
with Square Transformation for 
the Predictor 

D 𝑊𝑒𝚤𝑔ℎ𝑡 = 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ)ଷ 

Cubic Regression Model, without 
lower-order terms 

or 
Simple Linear Regression Model 
with Cube Transformation for the 
Predictor 

E 𝑊𝑒𝚤𝑔ℎ𝑡 = 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ) + 𝑏ଶ(𝐿𝑒𝑛𝑔𝑡ℎ)ଶ Quadratic Regression Model 

F 𝑊𝑒𝚤𝑔ℎ𝑡 = 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ) + 𝑏ଶ(𝐿𝑒𝑛𝑔𝑡ℎ)ଶ

+ 𝑏ଷ(𝐿𝑒𝑛𝑔𝑡ℎ)ଷ 
Cubic Regression Model 

 
For the purposes of this lesson, fitting models of the form 𝑊𝑒𝚤𝑔ℎ𝑡 = 𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ)ଷ is reasonable. 
However, in polynomial regression, it is typical to include all lower-order terms in a model. That is, if 
a 3rd-degree term is in a model, it should also include the 2nd-order and 1st-order terms, so: 𝑊𝑒𝚤𝑔ℎ𝑡 =
𝑏 + 𝑏ଵ(𝐿𝑒𝑛𝑔𝑡ℎ) + 𝑏ଶ(𝐿𝑒𝑛𝑔𝑡ℎ)ଶ + 𝑏ଷ(𝐿𝑒𝑛𝑔𝑡ℎ)ଷ. There are different schools of thought around this 
practice, but nuanced interpretations of the coefficients are easier when the lower-order terms are 
included; when they are not included, the interpretation of the coefficient of the highest-order term also 
must account for the lower-order components. If the course you are teaching does not cover multiple 
linear regression – or does not cover multiple linear regression until much later – this likely does not 
need to be mentioned.  
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Any polynomials of higher degree than this are probably too complicated to consider in this analysis. 
There is some evidence that a 4th-degree model would not be unreasonable, but the value added to this 
model by the additional complexity is likely not practically useful. A 3rd-degree model works well and 
is more interpretable than a 4th-degree model. Similarly, a quartic root transformation is likely 
unnecessarily complex given the real-world relationship motivating this dataset. If, say, one group 
wants to pursue something of this complexity, that should be fine – the model can then be compared in 
the next phase of the lesson and will likely not be preferred to one of the other models. 
 
Note: if the software you are using does not support multiple linear regression or polynomial 
regression, then models E and F cannot be fit. Instead, students pursuing an approach consistent with 
polynomial regression (i.e., focused on making adjustments to the predictors) should be encouraged to 
fit models C or D, respectively. If using TI-series calculators (or a similar technology), note that the 
order of the fish observations in the datasets has been randomized: it would be reasonable to have 
students manually enter the first, say, 10, 20, or 30 observations into lists and then use calculator’s 
functions to make appropriate transformations and perform the regressions. Models A, B, C, and D can 
all be fit in this way. (While 10 observations may minimally work, a curved pattern is apparent when 
juxtaposed with a fitted regression line using the first 30 observations.)  
 
Fitting and Evaluating Nonlinear Models 
 
Students now put their plan (developed in the second stage) into action. The logistics of how students 
enact their plan depends on the software tool used and the technical abilities of the students. A few 
possibilities are described below. During this stage, you will support the students as they use software 
to model and as they answer the questions in the New Model section of the student handout. Depending 
on the software available, your students’ abilities, and your pedagogical goals, you may consider 
providing students with copies of computer output that has already been created (included as a 
supplement to this lesson).  
 
For students comfortable with both linear regression and a full-featured statistical software package 
(e.g. Minitab, SPSS, R), students may be expected to fit their model directly from the raw data using 
the regression modeling and/or transformation tools built-in to the software. For students with less 
experience with fitting models, you may wish to suggest these tasks to them (presented in the list 
below in the approximate order they might be completed): 

 Create new columns (new variables) corresponding to the transformed variables they plan to 
analyze (e.g., a column for ඥ𝑊𝑒𝑖𝑔ℎ𝑡 or 𝐿𝑒𝑛𝑔𝑡ℎଷ).  

 Make a scatterplot to explore bivariate relationships with these newly created variables. 
 Perform a linear regression using these newly created variables. 
 To make a residual plot: 

o Create a column of predicted fish lengths based on the regression equation for the new 
model. 

o Create a column of residuals by subtracting the predicted fish lengths from the actual 
fish lengths. 

o Make a scatterplot with residuals on the y-axis and predicted values on the x-axis. 
 
If students have less experience with statistical software and/or linear modeling, you may wish to 
provide them with a dataset that already includes the appropriate calculated variables (included with 
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this lesson). If providing students with these pre-calculated variables, this file should not be shared 
with them until after they have determined which model they want to fit. Otherwise, seeing the 
calculated variables included in the dataset may suggest to them a path forward – the path forward 
should be suggested by the patterns they observe rather than the ease of fitting the model.  
 
Once students have fit their new regression model, they answer questions about the new analysis in the 
New Model section of the student handout. The questions are largely the same as the ones they were 
asked to answer about the original simple linear regression model.  
 
Note: Depending on which model students chose to fit, interpreting the value of the fitted slope might 
be more difficult or impossible; depending on your pedagogical goals, you may wish to omit the 
question asking students to interpret the slope of their alternative model (perhaps just sharing correct 
interpretations with them instead to illustrate the complexity). 
 

 Propose a new model to explain Weight using Length as a predictor. Why did you choose this? 
o This was answered in the previous stage of the lesson. 

 What is the regression equation? 
 What is the predicted (fitted) value for the fish with ID 4394? (See data excerpt on pg. 1) 
 What is the residual for the fish with ID 4394? 
 Interpret the slope. 
 Interpret the 𝑅ଶ value. 
 Examine the residual plots and comment on any potential problems. 
 Overall, does this model appear to be a good fit for the data? 

 
Then students compare the new model to the simple linear regression model in the Model Comparison 
section of the student handout. 
 

 Comparison of their fitted model with the original model: 
o Which model has a higher 𝑅ଶ value? What does this mean? 
o For which model is the fitted slope easier to interpret? 
o Compare the residual plots for the two models and comment on the similarities and 

differences. 
 
In statistical practice, model fitting is often an iterative process where exploratory data analysis and 
theoretical knowledge motivate models. These models are fit, examined, and compared, which in turn 
motivates new models that may be considered. In this lesson, students engage in a limited facsimile of 
model building: an initial model is considered, an alternative model is proposed based on an 
examination of the initial model fit and theoretical considerations (i.e., the relationship between length, 
volume, and weight), and that new model is fit and examined. As a class, several models will be 
considered, but it would be reasonable to expect a single analyst to generate all of these models – and 
more – as part of the model fitting process.  
 
Group Discussion to Compare Models 
 
After students have finished fitting their model, evaluating it, and comparing it to the original model, 
you should facilitate a group discussion where each group shares its model and their findings. For each 
of the models that students might fit, the 𝑅ଶ value will be higher than the original model. This suggests 
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that pursuing a nonlinear modeling approach improves the model fit. However, improvement in 𝑅ଶ 
alone is not enough to adjudicate which model is best.7 Students should also look to the residual plots 
for improvement in the curvature (and non-constant variance if this was noted earlier). Depending on 
which model students fit, they may see an improvement in the residual plots but still note that 
problems exist. (Sometimes this is the best we can hope for!)  
 
Students should then discuss which model (or models) among all the fitted models is best. This section 
of the lesson plan offers a brief overview of the model comparisons. The following sections provide 
the fitted values and residuals, the interpretation of the slopes, and evaluation of the models in much 
more detail.  
 
Table with the regression equation and 𝑅ଶ value for all models considered. 
Label Description Regression Equation 𝑅ଶ Residuals vs. Fits Plot 

0 
Simple Linear 
Regression (original 
model) 

Weight = - 8.330 
+ 0.1766 Length 

.9231 
Clear curvature, 
potential non-constant 
variance 

A 

Simple Linear 
Regression Model 
with Square Root 
Transformation 

Weight^(1/2) = - 0.9896 
+ 0.04222 Length 

.9601 
Mild potential 
curvature, no apparent 
non-constant variance 

B 

Simple Linear 
Regression Model 
with Cube Root 
Transformation 

Weight^(1/3) = 0.007328 
+ 0.02221 Length 

.9637 
No apparent 
curvature, no apparent 
non-constant variance 

C 
Quadratic Regression 
Model, without lower-
order terms 

Weight = - 2.151 
+ 0.001239 Length^2 

.9506 

Clear curvature 
(though improved 
over the original 
mode), potential non-
constant variance 

D 
Cubic Regression 
Model, without lower-
order terms 

Weight = - 0.02667 
+ 0.000011 Length^3 

.9626 
No apparent 
curvature, potential 
non-constant variance 

E 
Quadratic Regression 
Model 

Weight = 5.766 - 0.22211 
Length + 0.002768 
Length^2 

.9628 
No apparent 
curvature, potential 
non-constant variance 

F 
Cubic Regression 
Model 

Weight = 0.80 - 0.0133 
Length - 0.000108 Length^2 
+ 0.000013 Length^3 

.9630 
No apparent 
curvature, potential 
non-constant variance 

Note that all models exhibit non-normality of the residuals if one examines the Normal Probability 
Plot, though this is not central to the lesson. 
 
The cube root transformation model (model B) is likely the best model of the ones considered. Not 
only does it have the highest 𝑅ଶ value, it more importantly addresses the curvature in the residual plot 

 
7 As more predictors are added to a linear regression model, the 𝑅ଶ value will always increase or stay the same – never 

decrease. This is because 𝑅ଶ = 1 −
ௌௌா

ௌௌ்௧
: 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is the same for all models that use the same set of 𝑌 values, and 

𝑆𝑆𝐸𝑟𝑟𝑜𝑟 can only become smaller (or stay the same) as additional predictors are included in a model.  
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noted in the original model, the non-constant variance noted in the original model, and has a relatively 
straightforward interpretation. Other comparisons of similar pairs of models are: 
 

 Between models A and B, model B would be preferred because of its improvement in the 
residual plots.  

 
 Model C is likely not defensible relative to any of the others: while it represents and 

improvement over the original model, there are still clear problems in the residual plots. 
Model D would be preferred to C because of the improvement in the residual plots.  

 
 Models E and F are quite similar, and – based on the model comparisons examined in this 

lesson – neither is definitively better than the other. Still, if a single model must be chosen, 
model F might be preferred because it is consistent with the real-world relationship that weight 
is closely related to volume, which is three-dimensional property.  
 

Students should summarize the group discussion in the Overall Comparison section of the student 
handout.  

 
 Overall comparison: 

o Out of all of the models, which model do you prefer? 
o Why? 

 
Fitted values and residuals  
 
The student handout asks students to make a prediction and calculate a residual only for fish ID 4394 
(the first row in the included image of the 6 rows of the dataset). You could modify this value easily to 
be any of the other IDs included in the image of the first 6 rows (or even a different value from the 
dataset not pictured). With how many possible answers there are for this (considering the models 
students may fit), this may not be expedient for grading. To facilitate grading, the table below gives the 
fitted value and residual for the first six observations for the original model and models A-F. (These 
values were obtained using a computer: depending on how and when students round, the values they 
obtain may be slightly different.) 
 
Table showing the fitted value and residual for the first six observations in the dataset for each model 
considered in this lesson. 
 

 FishID 4394 3302 4780 13184 6 13321 

 Length 72 54 61 58 73 93 
  Weight 4.349 1.916 2.592 2.115 4.118 9.469 

Model 0 
(Original) 

Fitted Value 4.384 1.205 2.441 1.912 4.560 8.092 

Residual -0.035 0.711 0.151 0.203 -0.442 1.377 

Model A 
Fitted Value 2.050 1.290 1.586 1.459 2.092 2.937 

Residual 0.035 0.094 0.024 -0.005 -0.063 0.140 

Model B 
Fitted Value 1.606 1.207 1.362 1.295 1.629 2.073 

Residual 0.026 0.035 0.012 -0.012 -0.026 0.043 
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Model C 
Fitted Value 4.272 1.462 2.460 2.017 4.452 8.566 

Residual 0.077 0.454 0.132 0.098 -0.334 0.903 

Model D 
Fitted Value 4.155 1.738 2.517 2.159 4.332 8.986 

Residual 0.194 0.178 0.075 -0.044 -0.214 0.483 

Model E 
Fitted Value 4.126 1.845 2.519 2.197 4.305 9.054 

Residual 0.223 0.071 0.073 -0.082 -0.187 0.415 

Model F 
Fitted Value 4.127 1.810 2.533 2.197 4.303 9.071 
Residual 0.222 0.106 0.059 -0.082 -0.185 0.398 

 
 
Comparing the analyses can take several forms: the appropriateness of the model fit and/or how well 
the explanatory variable accounts for variability in the response variable (i.e. comparing 𝑅ଶ values).  

Interpretation of slope 

On their worksheet, students are asked to interpret the fitted slope for the original model and their new 
model. The interpretation of the slope for the original model may not be fully appropriate (considering 
problems were identified), but a standard interpretation8 might be:  
 

For every 1-millimeter increase in fish length, we expect a 0.1766-gram increase in fish weight, 
on average.  

 
Because these units are relatively small, it might make sense to adjust the interpretation, such as: 
 

For every 10-millimeter increase in fish length, we expect a 1.766-gram increase in fish weight, 
on average.  

 
Depending on which model students chose to fit, interpreting the value of the fitted slope might be 
more difficult or impossible; depending on your pedagogical goals, you may wish to omit the question 
asking students to interpret the slope of their alternative model (perhaps just sharing correct 
interpretations with them instead to illustrate the complexity). A full interpretation for the fitted slope 
for each alternative model follows. 
 

A. Because this is a simple linear regression model, the interpretation is more straightforward – 
but there is still a challenge. A reasonable interpretation might be: 
 
For every 1-millimeter increase in fish length, we expect a 0.04222-ඥ𝑔𝑟𝑎𝑚 increase in fish 

ඥ𝑤𝑒𝑖𝑔ℎ𝑡, on average.  
 
In this model, the response variable is not 𝑊𝑒𝑖𝑔ℎ𝑡; the response variable is ඥ𝑊𝑒𝑖𝑔ℎ𝑡 and the 
interpretation should reflect that. The interpretation is more straightforward than for models A 
and C because the explanatory variable is still simply 𝐿𝑒𝑛𝑔𝑡ℎ, but this model does not establish 

 
8 Adjust the interpretation as needed to include aspects you value, such as restricting the interpretation to only apply to trout 
perch collected from the Athabasca River and the Peace River.  
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a linear relationship between 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑊𝑒𝑖𝑔ℎ𝑡 – it instead establishes a linear relationship 
between 𝐿𝑒𝑛𝑔𝑡ℎ and ඥ𝑊𝑒𝑖𝑔ℎ𝑡, which is a nonlinear relationship.  
 

B. As in model A, this is a relatively straightforward interpretation but still challenging because of 
its nonlinear nature. A reasonable interpretation might be: 
 
For every 1-millimeter increase in fish length, we expect a 0.02221- ඥ𝑔𝑟𝑎𝑚య  increase in fish 

ඥ𝑤𝑒𝑖𝑔ℎ𝑡
య , on average.  
 
In this model, the response variable is not 𝑊𝑒𝑖𝑔ℎ𝑡; the response variable is ඥ𝑊𝑒𝑖𝑔ℎ𝑡

య  and the 
interpretation should reflect that. The interpretation is more straightforward than for models A 
and C because the explanatory variable is still simply 𝐿𝑒𝑛𝑔𝑡ℎ, but this model does not establish 
a linear relationship between 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑊𝑒𝑖𝑔ℎ𝑡 – it instead establishes a linear relationship 
between 𝐿𝑒𝑛𝑔𝑡ℎ and ඥ𝑊𝑒𝑖𝑔ℎ𝑡

య , which is a nonlinear relationship.  
 

C. Because this model uses 𝐿𝑒𝑛𝑔𝑡ℎଶ as the only predictor, the fitted slope value of 0.001239 is 
the expected increase in 𝑊𝑒𝑖𝑔ℎ𝑡 (in grams) for a 1-unit increase in 𝐿𝑒𝑛𝑔𝑡ℎଶ. Of course, 
(1 𝑚𝑚)ଶ = 1 𝑚𝑚ଶ, so the interpretation can be somewhat simplified. However, if students 
which to modify the interpretation as was done above (i.e. describing a 10-millimeter increase 
in 𝐿𝑒𝑛𝑔𝑡ℎ), this becomes much more challenging. It is also worth noting that this does not refer 
to a 1-millimeter2 increase in the surface area of the fish: only the length is being measured, and 
surface area is a distinct property which was not measured. The slope also incorporates the 
change due to the linear term that was omitted, further complicating the interpretation.  

 
D. As in model C, the interpretation is complicated but possible. Because this model uses 

𝐿𝑒𝑛𝑔𝑡ℎଷ as the only predictor, the fitted slope value of 0.000011 is the expected increase in 
𝑊𝑒𝑖𝑔ℎ𝑡 (in grams) for a 1-unit increase in 𝐿𝑒𝑛𝑔𝑡ℎଷ. Of course, (1 𝑚𝑚)ଷ = 1 𝑚𝑚ଷ, so the 
interpretation can be somewhat simplified. However, if students which to modify the 
interpretation as was done above (i.e. describing a 10-millimeter increase in 𝐿𝑒𝑛𝑔𝑡ℎ), this 
becomes much more challenging. It is also worth noting that this does not refer to a 1-
millimeter3 increase in the volume of the fish: only the length is being measured, and volume is 
a distinct property which was not measured. The slope also incorporates the change due to the 
linear and quadratic terms that were omitted, further complicating the interpretation. 

 
E. Because this model includes both 𝐿𝑒𝑛𝑔𝑡ℎ and 𝐿𝑒𝑛𝑔𝑡ℎଶ as predictors, there is not a single slope 

to interpret. This makes sense: interpreting the slope in linear regression describes the linear 
change we expect in the response for a change in the explanatory. In this model, we are fitting a 
nonlinear model and cannot simply interpret it as we would a linear model.  

 
F. As in model E, the slope cannot be interpreted for this model because there is not a single 

slope: there are three slopes for this nonlinear model. Interpreting the slope in linear regression 
describes the linear change we expect in the response for a change in the explanatory. In this 
model, we are fitting a nonlinear model and cannot simply interpret it as we would a linear 
model. 
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If students fit a model using either a 4th-degree polynomial or a quartic root transformation, the 
challenges in interpretation are similar to the above.  
 
Evaluation of models 
 
The scatterplot with the regression fit and the Residuals vs. Fits graph for each model are shown 
below. While each model (A-F) is an improvement over Model 0, Model B is perhaps the best among 
the models considered based on the Residuals vs. Fits graph (though not overwhelmingly better than 
any other model). A note at the end of this document includes additional comments about residual 
plots.  

 
Scatterplot with fitted models and residual Residuals vs. Fits graph for Model 0 (Original) 
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Scatterplots with fitted models and residual Residuals vs. Fits graphs for Models A, B, C, and D 

 
Scatterplots with fitted models and residual Residuals vs. Fits graphs for Models E and F 
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Attached Materials 
 
The following files are included: 

 Handouts 
o Student handout (Word file)  
o Selected computer output from the analyses for the Trout Perch data that can be used if 

students do not have access to appropriate technology (Word file; included in the .zip 
file containing the data files) 

 Data files 
o Trout Perch data, cleaned and appropriate for analysis (Minitab and .csv) 
o Trout Perch data, cleaned and appropriate for analysis, with calculated variables 

(Minitab and .csv) 
o An additional fish dataset from the same source (Slimy Sculpin) that exhibits the same 

relationships and can be used to create exam questions, assignments, etc.  
o The raw data files for both Trout Perch and Slimy Sculpin (as they were downloaded 

from the Environment and Climate Change Canada website).  
 Technology guides 

o Minitab 
 A brief overview for using Minitab to perform the analyses in this lesson 
 A Minitab workbook file containing various analyses already performed for the 

Trout Perch Data. 
o CODAP 

 A brief overview for using CODAP to perform some of the analyses in this 
lesson 

 A CODAP file containing two of the models and residual plots as an example. 
o TI-83/84 

 A brief overview for using TI-83/84 calculators to perform the analyses in this 
lesson (with a subset of the data) 

 
Reflections and Additional Recommendations 

 
Thoughts on extensions 
 
Students are asked to make a prediction and calculate a residual for a single observation using both 
Model 0 and the model that they propose. By itself, a single residual often has little value – even 
answering questions such as “Is this residual particularly large (or small)?” require consideration of the 
residual relative to others. This discussion of residuals can be extended to more precisely articulate the 
shortcomings of Model 0: you can ask students to explain if the original model will systematically 
overestimate or underestimate the weights of any types of fish. As indicated by the rectangles below, 
the shortest and longest fish will tend to have their weights underestimated by the original regression 
model. There is a corresponding tendency for fish with lengths closer to the average length to have 
their weights overestimated, though this is less clear from the graph due to the abundance of 
observations obscuring the line. Such a discussion might be prompted by assigning each group of 
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students a different observation (intentionally chosen because the model overestimates or 
underestimates it9) and identifying patterns among the set of residuals across groups.  
 

 
 
This discussion could also be related to extrapolation: to what extent would Model 0 or any of the 
alternative models be appropriate for fish shorter than the 46 mm or longer than 108 mm (the 
minimum and maximum, respectively)? While extrapolation can be dangerous and should not be 
undertaken lightly, Model 0 would perform even worse for extrapolations, but the alternative models 
might be more cautiously applied for fish close to the lengths in our dataset (e.g., 40 mm and 110 mm) 
because we seem to have accounted for the salient curve in the data and we have a model that has some 
basis in a physical relationship. Still, consulting with someone who has expertise in fish biology would 
be advisable before using any of these models to make moderate extrapolations outside of a classroom 
setting.  
 
When using polynomial regression (and multiple linear regression in general), model over-fit is a 
substantial concern. There can be a tendency for some students to want to fit very complex models 
(e.g. degree n-1 polynomials) that can result in perfect fit for the dataset they are using but would be 
terrible models when applied to any other dataset. This suggests two extensions:  

1. Discuss the behaviour of the fitted models just outside the values that are included in the 
dataset. Often, polynomial models will appear quite unrealistic for values even slightly outside 
the dataset.  

2. Explore model validation techniques such as cross-validation. Each group could be given a 
slightly different dataset of randomly chosen fish. The groups could develop their models and 
then apply them to the remaining fish and calculate appropriate fit statistics. Many textbooks on 
linear regression include such a topic, including STAT2 by Cannon et al. (2018). 

 
9 Some candidates for these observations are the fish with the following FishID: 3319, 3331, 3343, 3344 (long fish that are 
all underestimated); 3327, 4052, 4151, 13320 (mid-length fish that are all overestimated); 4, 3259, 4091, 4198 (short fish 
that are all underestimated). Note that because the FishID values are in a random order, it may be easiest to sort the dataset 
by FishID in a spreadsheet program (such as Microsoft Excel) to identify these observations. Again, these observations 
were intentionally chosen to illustrate the underestimation/overestimation pattern – there are, of course, observations that do 
not fit this pattern, such as 1196, 3165, 3179, 4282 (mid-length fish that are all underestimated). 
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This dataset was collected as part of a study to monitor fish health in the context of development in 
Canada’s Oil Sands Region. Specifically, fish were sampled upstream from developed sites to serve as 
a reference for fish sampled downstream from developed sites that could exhibit environmental effects 
from the developed site. Facilitating a discussion with students about how a model developed in this 
lesson plan (e.g., Model B) could be used to determine if environmental impacts were occurring could 
connect this lesson back to the research context and motivate further statistical considerations. In the 
raw data included with this lesson, information about where fish were sampled is included (US = 
upstream; DS = downstream); the dataset used in this lesson includes fish from both upstream and 
downstream locations. Possible approaches students may consider are:  

 Fitting a model and determining if new fish are much smaller (or larger) than predicted, leading 
to a discussion about residuals and unusual points 

 Including the upstream/downstream information in the model as a categorical variable. For less 
experienced students, this might take the form of using colours to indicate upstream or 
downstream group membership on a graph and/or fitting two regression models and visually 
inspecting them for differences. See the graph below for an example. You could ask, “how 
much difference in regression coefficients is enough difference to determine if the developed 
sites seem to have an effect on fish?” to motivate inferential techniques with regression. More 
advanced students could use more formal approaches and possibly consider interaction terms. 
 
 

 
 

 
Note that the there is a rather small coefficient for the categorical predictor variable, but the p-value is 
also rather small (about 0.001). This could motivate a discussion about statistical significance versus 
practical significance.10 
 
 

 
10 The term statistical significance is no longer recommended by many (e.g., Wasserstein et al., 2019). Such a small 
difference coefficient could be used as an example of when the term significance might not convey the intended message.  
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Thoughts on differentiation 
 
Depending on where students are at in their learning experience, you may wish to provide some of the 
students with the dataset that contains the calculated variables already while other students may be 
asked to use software to calculate the variables themselves. Moreover, some groups could be focused 
on just one type of model (i.e. polynomial or transformation of the response) from the beginning, 
which would provide more structure. Due to the complexity of the interpretations of the slope for 
various models, providing some structure to this (e.g., providing students with a template and have 
them fill in blanks) would be another way to support students with different learning needs and could 
be combined with other modifications. 
 
Thoughts on finding more datasets 
 
Datasets appropriate for nonlinear regression modeling abound. If searching for more nonlinear 
datasets for which polynomial regression is appropriate, focus on physical relationships (e.g., the 
period of a pendulum or Boyle’s Law), scientific formulae, etc. as the inspiration: many nonlinear 
relationships are well-established and appropriate for students learning regression. I chose to use fish 
data in this lesson because the overall three-dimensional size (volume) of fish is often approximated 
using a one-dimensional measure (length).11  
  

Notes on Other Residual Plots 
 
Students with more regression modeling experience may be expected to make residual diagnostic plots, 
such as those shown in the graph below. (This graph is called a 4-in-1 Plot and is produced by Minitab. 
It simply shows four residual diagnostic plots in a single graph. All four of these diagnostic plots were 
produced using the (regular) residuals, though students may use standardized residuals, too. The graphs 
in the 4-in-1 plot are: a normal probability plot of the residuals (top left), a histogram of the residuals 
(bottom left), a scatterplot of the residuals (Y-axis) versus the fitted values (X-axis), and a line plot 
with residuals on the Y-axis and the order of the observation in the dataset on the X-axis.) 
 

 
11 Using fish as a context for nonlinear modeling has been done before in textbooks including STAT2 (Cannon et al., 2013, 
2018) and The Practice of Statistics (Starnes et al., 2012). The dataset used in this lesson has not previously been used.  
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The most important of these graphs for our initial modeling purpose is Residuals vs. Fits: a clear 
curved pattern is present, suggesting a nonlinear relationship between the variables. (Non-constant 
variance may also be an issue, though addressing the nonlinearity would be the first priority. To see the 
non-constant variance, note that the vertical distance between the largest and smallest residual at each 
point on the x-axis systematically changes, indicated by the red lines. Among the fish with the smallest 
length, there is less variability in weights; among fish that are of average length for the dataset there is 
considerable variability in weights. This observation about non-constant variance is a separate problem 
from the curvature.) The Residuals vs. Fits graph shows the same overestimation/underestimation 
mentioned before, but the addition of the horizontal dashed line at 0 might make this clearer.  
 
For Model B (perhaps the most appropriate of the alternative models), the 4-in-1 Plot is shown below. 
Notice that both the curvature and non-constant variance apparent in the Residuals vs. Fits graph have 
been considerably improved relative to Model 0. In the Residuals vs. Fits graph – a plot of the 
residuals against the row number for each observation – there is an improvement in Model B relative 
to Model 0, too: in Model 0, there seems to be an asymmetry in the magnitude of the positive residuals 
when compared to the negative residuals (note that 0.0 is not in the middle of the Y-axis scale, and 
there is no need for -5.0 to be labeled on the Y-axis scale). However, with Model B this asymmetry 
appears to be improved: the magnitude of the positive residuals and negative residuals seem to be 
about the same (note that 0.0 is in the middle of the Y-axis scale and there seems to be roughly equal 
scattering above and below 𝑦 = 0). Lastly, the distribution of the residuals for Model B more closely 
resembles the normal distribution. While not critical to the analysis in this lesson, the distribution of 
the residuals becomes important when inferential methods are used. For Model 0, the distribution of 
the residuals appears to be somewhat right skewed, but the distribution of the residuals for Model B 
appears to be approximately bell-shaped. While the distribution of the residuals does not appear to be 
exactly normal (as can be seen with the departures from the straight-line pattern in the Normal 
Probability Plot), the skew apparent in Model 0 is no longer present – yet another improvement. The 
Versus Order line plots for both Model 0 and Model B do not reveal potential patterns or relationships 
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between the residuals and the order the observations appeared in the dataset; if such a pattern existed, it 
would warrant further investigation. Note that the asymmetry in the magnitude of the residuals 
apparent in the Residuals vs. Fits graph for Model 0 and the improvement in this area for Model B can 
also be seen in the Versus Order graphs. 
 
 

 
 
 
Examining the 4-in-1 Plots for the other models will reveal similar results: all six models represent an 
improvement relative to Model 0, but Models B, D, and F tend to represent greater improvement than 
Models A, C, and E. 

 
Further Reading 

 
This lesson touches on many regression topics that are emphasized (or covered) in introductory 
statistics courses: you may find it helpful to use a regression-focused textbook as a reference. While 
there are many such books available, I reference four here to point you in the right direction. Cannon et 
al. (2018) and Mendenhall and Sincich (2012) are regression books that focus on applications and have 
minimal prerequisites. Kutner et al. (2005) and Bingham and Fry (2010) include both applications and 
theory; these books routinely draw on knowledge of calculus and linear algebra. Every topic covered in 
this lesson is included in each of these books. While not as comprehensive as a textbook, another 
resource to consider are the course notes for Penn State’s STAT 501: Regression Methods course; these 
notes are freely available online (see Lesson 9: Data Transformations12).  

 
12 The Pennsylvania State University, STAT 501: Regression Methods, Lesson 9: Data Transformations 
https://online.stat.psu.edu/stat501/lesson/9  
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